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Efficient Analysis of Waveguide Components
by FDTD Combined with Time
Domain Modal Expansion

F. Alimenti, P. Mezzanotte, Member, IEEE, L. Roselli, Member, IEEE, and R. Sorrentino, Feliow, IEEE

Abstract—A novel Finite Difference Time Domain (FDTD)
scheme is proposed for the analysis of waveguide components.
The method consists of combining the conventional 3D with
the 1D-FDTD algorithm resulting from the time domain modal
expansion in uniform wavegunides. The new algorithm has been
validated on a simple test example showing that the same ac-
curacy can be obtained with a substantial improvement in the
numerical efficiency.

I. INTRODUCTION

HE FDTD [1], [2] is a well-established numerical tech-

nique for the analysis of microwave structures. The recent
development of modal absorbing boundary conditions (ABC’s)
[3], [4] has extended the applicability of the method to
waveguide circuits by eliminating errors due to the truncation
of the computational domain. Nonetheless, practical problems
involve considerable or even unaffordable numerical efforts,
because of the large extension of the computational domain
and thus the large number of cells and unknowns involved
by the discretization of a 3D structure. A graded mesh and a
subgriding can only alleviate this difficulty.

It can be observed, however, that waveguide components
generally consist of a small number of discontinuities and/or
junctions (possibly with arbitrary geometries), connected by
uniform waveguide lengths. The latter have usually sim-
ple (e.g., rectangular) cross-sections with analytically known
modal spectra. Using a time domain modal expansion of the
electromagnetic (EM) field propagating in the waveguides, a
novel FDTD scheme is proposed in this letter. The conven-
tional 3D formulation is retained for the discontinuity regions,
while a 1D formulation is employed for the waveguides. In
this manner, a substantial reduction of the mesh size, thus of
the number of unknowns, is achieved leading to a significant
improvement of the numerical efficiency, in terms of both CPU
time and memory storage requirements.

II. FORMULATION OF THE METHOD

The method is illustrated at the example of the simple
structure of Fig. 1, shown at the top of the next page, where
two arbitrary discontinuitics (regions 1 and 3) are connected
by a uniform waveguide (region 2).
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Let us first consider the uniform waveguide region com-
prised between the reference planes at z = k; and 2z = ko.
Rather than applying the conventional FDTD scheme, we can
use modal analysis.

Modal expansion of the EM field in a waveguide is usually
performed in frequency domain, but a hollow waveguide can
also be applied in time domain since the eigenvectors are
independent of frequency. For a z-directed waveguide, the
transverse components of the EM field can be expressed as
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where ¢, and En are orthonormalized modal eigenvectors.
The EM field amplitudes (equivalent voltages V,, and cur-
rents I,,) are related to the field distribution by
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and satisfy the following differential equation:
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in (3) and (4) S is the waveguide cross-section; in (5) f,, stands
for either V,, or I,,, kzn is the eigenvalue of the nth mode, and
co is the wave velocity in a vacuum. f,, represents the time
varying amplitude of the nth mode at the z-coordinate. As
such, it may contain a range of frequencies partly above and
partly below cutoff. Equation (5) can be discretized in space
(») and time (¢) according to the central difference scheme
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Equation (6) governs the time-discrete evolution of the EM
field of the nth mode in the waveguide region. The knowledge
of the modal eigenvectors &,,, Tln has reduced the analysis to a
very simple (and very fast) one-dimensional FDTD algorithm
for each mode.
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Fig. 1. Interfacing 1D with 3D grids.

TABLE 1
ConVENTIONAL FDTD TIME MARCHING SOLUTION

1. For t from O to final time step

1.1. Updating of the H-field components
1.2. Application of the H-field boundary conditions

1.3. Updating of the E-field components
1.4. Application of the E-field boundary conditions

In practical cases, a limited number of modes need to
be included in the waveguide region, depending on 1) the
frequency band of the source, and 2) the proximity of the
reference planes to the discontinuities. Shifting such planes
closer to the discontinuities in order to reduce the 3D domain
requires additional modes to be included in the 1D simulation
of the waveguide region. Determining the best compromise
to minimize the computational effort, however, is outside the
scope of this letter.

The conventional 3D-FDTD scheme is used for the dis-
continuity regions. As shown in Fig. 1, they correspond to
the spatial index % being comprised in the intervals 1 to kg
(region 1), and k7 to ky (region 3), while the waveguide region
corresponds to & = k1 to ky. Equations (1)—~(4) can be used
to interface the 3D with the 1D meshes. Specifically, (1) and
(2) allow the field distributions at the reference planes of the
discontinuities to be computed from the voltage and current
amplitudes at the waveguide ends, while (3) and (4) convert
the field distributions at the reference planes into the voltage
and current amplitudes at the waveguide ends.

To illustrate the practical implementation of the mixed 1D—
3D algorithm, consider first the conventional time marching

TABLE 1L
Mobiriep FDTD TiME MARCHING SOLUTION

1. For t from 0 to final time step
1.1. Fork = 1+ (k;-172) and k = (k;+1/2) + (kp-1/2)

1.1.1. Updating the H-field components (3D)
1.2. Application of the H boundary conditions
1.3. Fork =2+ (kj-1) and k = (ky+1) + (k1)

1.3.1. Updating of the E-field components (3D)
14. Fork=k;+k;

1.4.1. Updating of the voltages (1D)
1.5. V(k;) = E(k;), V(k;) —> E(ky) Eq. (1)
1.6. E(k;-1) = V{k;-1), E(ka+1) = V(ka+1) Egq.(3)
1.7. Application of the E boundary conditions

solution of the FDTD leapfrog algorithm. As illustrated in
Table I, the H- and E-fields are updated alternately in time,
and the respective boundary conditions on the H- or E-field,
are applied at proper time instants. The 1D-3D time marching
scheme is described in Table II. It differs from the conventional
one for the spatial loop k£ = k1 to ko (Step 1.4) and for Steps
1.5 and 1.6 that correspond to interlacing the 3D with 1D
scheme. Observe that the 3D and 1D subdomains partially
overlap at & = (k1 — 1) to ky [and & = k2 to (k2 + 1)]. This is
necessary for updating the E-field in %y (and %) using (1) and
for computing the voltage in k2 — 1 (and k2 + 1) using (3).

Note that only the voltage amplitude has been used in the
waveguide region. Alternatively, only the current amplitude
could also be used.

It could be observed that rather than by a 1D FD scheme,
the uniform waveguide could also be described analytically
either in time [5] or frequency domains (e.g., scattering
matrix). In both cases, however, a considerable additional
effort would be required for the computation of convolution
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Fig. 2. The simulated structure.

integrals and/or time-to-frequency transforms. Observe also
that the computation of a terminal description such as the
generalized scattering matrix requires a number of simulations
equal to the matrix size, and the implementation‘of multimodal
ABC’s.

III. RESULTS

A simple structure consisting of two inductive irises in a
WRO0 rectangular waveguide has been assumed in order to
validate the method (see Fig. 2). The reference planes and
the source frequency range have been chosen in such a way
that only the dominant TE;q mode need to be considered. A
simple transmission line is thus sufficient to model the EM
field propagation in the waveguide.

The distance d between the two irises has been chosen to
be 3)/2 at about 12.5 GHz. The structure has been analyzed
using both the conventional and the new 3D-1D scheme. In
the former case a uniform mesh with 11 % 41 % 87 cells has
been used, the spatial and time steps being Az = 1.016 mm,
Ay = 0.5715 mm, Az = | mm, and At = 1 ps. With the
new formulation, the waveguide region has been simulated
assuming unimodal propagation.

The waveguide has been terminated by two unimodal ab-
sorbing walls [4], [5] 15 mm away from the irises to avoid
higher-order modes interaction and excited by a carrier signal
of 10.3 GHz modulated by a Gaussian pulse 4.2 GHz wide at
the 5% of the maximum power.

The results computed by both approaches are plotted in
Fig. 3. The corresponding curves are perfectly overlapped,
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Fig. 3. Comparison between 3D and 1D-3D FDTD simulations of the
structure in Fig. 2.

but the waveguide region has been discretized by just 33
unknowns instead of 89298 as required by the conventional
FDTD, with corresponding time and memory savings.

IV. CoNcLusION

A novel computational scheme that combines the conven-
tional FDTD algorithm with the modal expansion of the EM
field in a waveguide has been proposed for the efficient anal-
ysis of waveguide components. The modal expansion allows
uniform waveguide lengths to be modeled as transmission lines
in time domain, thus reducing from 3D to 1D the complexity
of the problem. The mixed 1D-3D scheme has been validated
at the example of a simple rectangular waveguide problem,
where unimodal propagation has been assumed in the uniform
waveguide region. The inclusion of higher-order modes as well
as the generalization to arbitrary waveguide cross sections can
be made in a straightforward manner.
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