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Abstract-A novel Finite Difference Time Domain (FDTD)

scheme is proposed for the analysis of wavegnide components.

The method consists of combining the conventional 3D with
the lD-FDTD algorithm resulting from the time domain modal

expansion in uniform waveguides. The new algorithm has been
validated on a simple test example showing that the same ac-
curacy can be obtained with a substantial improvement in the
numerical efficiency.

I. INTRODUCTION

T HE FDTD [1], [2] is a well-established numerical tech-

nique for the analysis of microwave structures. The recent

development of modal absorbing boundary conditions (ABC’s)

[3], [4] has extended the applicability of the method to

waveguide circuits by eliminating errors due to the truncation

of the computational domain. Nonetheless, practical problems

involve considerable or even unaffordable numerical efforts,

because of the large extension of the computational domain

and thus the large number of cells and unknowns involved

by the discretization of a 3D structure. A graded mesh and a

subgriding can only alleviate this difficulty.

It can be observed, however, that waveguide components

generally consist of a small number of discontinuities and/or

junctions (possibly with arbitmry geometries), connected by

uniform waveguide lengths. The latter have usually sim-

ple (e.g., rectangular) cross-sections with analytically known

modal spectra. Using a time domain modal expansion of the

electromagnetic (EM) field propagating in the waveguides, a

novel FDTD scheme is proposed in this letter. The conven-

tional 3D formulation is retained for the discontinuity regions,

while a lD formulation is employed for the waveguides. In

this manner, a substantial reduction of the mesh size, thus of

the number of unknowns, is achieved leading to a significant

improvement of the numerical efficiency, in terms of both CPU

time and memory storage requirements.

II. FORMULATION OF THE METHOD

The method is illustrated at the example of the simple

structure of Fig. 1, shown at the top of the next page, where

two arbitrary discontinuities (regions 1 and 3) are connected
by a uniform waveguide (region 2).
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Let us first consider the uniform waveguide region com-

prised between the reference planes at z = /cl and z = k2.

Rather than applying the conventional FDTD scheme, we can

use modal analysis,

Modal expansion of the EM field in a waveguide is usually

performed in frequency domain, but a hollow waveguide can

also be applied in time domain since the eigenvectors are

independent of frequency. For a z-directed waveguide, the

transverse components of the EM field can be expressed as

n

II.(Z, ‘y, 2, t) = ~ L(.z, t)inor,!/) (2)

n

where & and h. are orthonormalized modal eigenvectors.

The EM field amplitudes (equivalent voltages V. and cur-

rents In) are related to the field distribution by

PP
Vn(.z,t) = J!lET($,y, 2, t) . !2’($, y) (holy (3)

In(z, t) =
~

L(Z, y, ~, t) “ Xn(fc, y) drdy, (4)

s

and satisfy the following differential equation:

(5)

in (3) and (4) S is the waveguide cross-section; in (5) fn stands

for either V. or 1., k~n is the eigenvalue of the nth mode, and

co is the wave velocity in a vacuum. fn represents the time

varying amplitude of the -nth mode at the z-coordinate. As

such, it may contain a range of frequencies partly above and

partly below cutoff. Equation (5) can be discretized in space

(z) and time (t) according to the central difference scheme

f;:; – y:z (f:, k+l – ‘2f:, k!+ f:, k-l)
—lj@t2k:nf;, k + ‘f:, k —f?!;i. (6)

Equation (6) governs the time-discrete evolution of the EM
field of the nth mode in the waveguide region. The knowledge

of the modal eigenvectors Z., ~. has reduced the analysis to a

very simple (and very fast) one-dimensional FDTD algorithm

for each mode.
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Fig. 1. Interfacing ID with 3D grids.

TABLE I
CONVENTIONAL FDTD TIME MARCHING SOLUTION

. Fort from O to final time step

1.1. Updating of lhe H-field components

1.2. Application of the H-field boundary conditions

1.3. Updating of the E-field components

1.4. Application of the E-field boundary conditions

In practical cases, a limited number of modes need to

be included in the waveguide region, depending on 1) the

frequency band of the source, and 2) the proximity of the

reference planes to the discontinuities. Shifting such planes

closer to the discontinuities in order to reduce the 3D domain

requires additional modes to be included in the ID simulation

of the waveguide region. Determining the best compromise

to minimize the computational effort, however, is outside the

scope of this letter.

The conventional 3D-FDTD scheme is used for the dis-

continuity regions. As shown in Fig. 1, they correspond to

the spatial index k being comprised in the intervals 1 to kl

(region 1), and kz to kf (region 3), while the waveguide region

corresponds to k = kl to /cz. Equations ( l)–(4) can be used

to interface the 3D with the ID meshes. Specifically, (1) and

(2) allow the field distributions at the reference planes of the

discontinuities to be computed from the voltage and current

amplitudes at the waveguide ends, while (3) and (4) convert
the field distributions at the reference planes into the voltage

and current amplitudes at the waveguide ends.

To illustrate the practical implementation of the mixed lD–

3D algorithm, consider first the conventional time marching

k, k+l

TABLE 11
MODIFIED FDTD TIME MARCHING SOLLJTION

Fort from O to final time step

1.1. For k = l+ (kl-1/2) and k = (k,~l12) G (kr112)

1.1.1. Updating the H-field components (3D)

1.2. Application of the H boundary conditions

1.3. For k = 2 ~ (kI-l) and k = (kzhl) * (kfl)

1.3.1. Updating of the E-field components (3D)

1.4. Fork = kl ~k2

1.4.1. Updating of the voltages (lD)

1.5. V(kl) + E(kl), V(kz) + E(kJ Eq. (1)

1.6. E(kl-l) + V(kl-l), E(kz+l) + V(kz+l) Eq. (3)

1.7. Armlication of the E boundarv conditions

solution of the FDTD leapfrog algorithm. As illustrated in

Table I, the H- and E-fields are updated alternately in time,

and the respective boundary conditions on the H- or E-field,

are applied at proper time instants. The lD–3D time marching

scheme is described in Table 11.It differs from the conventional

one for the spatial loop k = kl to kz (Step 1.4) and for Steps

1.5 and 1.6 that correspond to interlacing the 3D with 1D
scheme. Observe that the 3D and 1D subdomains partially

overlap at k = (kl – 1) to kl [and k = kz to (kz + l)]. This is

necessary for updating the E-field in kl (and kz) using (1) and

for computing the voltage in kz – 1 (and kz + 1) using (3).

Note that only the voltage amplitude has been used in the

waveguide region. Alternatively, only the current amplitude

could also be used.

It could be observed that rather than by a lD FD scheme,

the uniform waveguide could also be described analytically

either in time [5] or frequency domains (e.g., scattering

matrix). In both cases, however, a considerable additional

effort would be required for the computation of convolution
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Fig. 2. The simulated structure.

integrals and/or time-to-frequency transforms. Observe also

that the computation of a terminal description such as the

generalized scattering matrix requires a number of simulations

equal to the matrix size, and the implementation%f multimodal

ABC’S.

III. RESULTS

A simple structure consisting of two inductive irises in a

WR90 rectangular waveguide has been assumed in order to

validate the method (see Fig. 2). The reference planes and

the source frequency range have been chosen in such a way

that only the dominant TEIO mode need to be considered. A

simple transmission line is thus sufficient to model the EM

field propagation in the waveguide.

The distance d between the two irises has been chosen to

be 3J/2 at about 12.5 GHz. The structure has been analyzed

using both the conventional and the new 3D–l D scheme. In

the former case a uniform mesh with 11 * 41 * 87 cells has

been used, the spatial and time steps being Ax = 1.016 mm,

Ag = 0.5715 mm, Az = 1 mm, and At = 1 ps. With the

new formulation, the waveguide region has been simulated

assuming unimodal propagation.

The waveguide has been terminated by two unimodal ab-

sorbing walls [4], [5] 15 mm away from the irises to avoid

higher-order modes interaction and excited by a carrier signal

of 10.3 GHz modulated by a Gaussian pulse 4.2 GHz wide at

the 5% of the maximum power.

The results computed by both approaches are plotted in

Fig. 3. The corresponding curves are perfectly overlapped,
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Fig. 3. Comparison between 3D and lD-3D FDTD simulations of tbe

structure in Fig. 2.

but the waveguide region has been discretized by just 33

unknowns instead of 89298 as required by the conventional

FDTD, with corresponding time and memory savings.

IV. CONCLUSION

A novel computational scheme that combines the conven-

tional FDTD algorithm with the modal expansion of the EM

field in a waveguide has been proposed for the efficient anal-

ysis of waveguide components. The modal expansion allows

uniform waveguide lengths to be modeled as transmission lines

in time domain, thus reducing from 3D to lD the complexity

of the problem. The mixed lD-3D scheme has been validated

at the example of a simple rectangular waveguide problem,

where unimodal propagation has been assumed in the uniform

waveguide region. The inclusion of higher-order modes as well

as the generalization to arbitrary waveguide cross sections can

be made in a straightforward manner.
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